Spherical distributions of $N$ points with maximal distance sums are well spaced

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical Distribution of 5 Points with Maximal Distance Sum

In this paper, we mainly consider the problem of spherical distribution of 5 points, that is, how toconfigure 5 points on a sphere such that the mutual distance sum attains the maximum. It is conjecturedthat the sum of distances is maximal if 5 points form a bipyramid configuration in which case two pointsare positioned at two poles of the sphere and the other three are position...

متن کامل

Sums of Magnetic Eigenvalues Are Maximal on Rotationally Symmetric Domains

The sum of the first n ≥ 1 energy levels of the planar Laplacian with constant magnetic field of given total flux is shown to be maximal among triangles for the equilateral triangle, under normalization of the ratio (moment of inertia)/(area) on the domain. The result holds for both Dirichlet and Neumann boundary conditions, with an analogue for Robin (or de Gennes) boundary conditions too. The...

متن کامل

Spherical-Homoscedastic Distributions Spherical-Homoscedastic Distributions: The Equivalency of Spherical and Normal Distributions in Classification

Many feature representations, as in genomics, describe directional data where all feature vectors share a common norm. In other cases, as in computer vision, a norm or variance normalization step, where all feature vectors are normalized to a common length, is generally used. These representations and pre-processing step map the original data from R to the surface of a hypersphere Sp−1. Such re...

متن کامل

Fixed Points Theorems with respect to \fuzzy w-distance

In this paper, we shall introduce the fuzzyw-distance, then prove a common fixed point theorem with respectto fuzzy w-distance for two mappings under the condition ofweakly compatible in complete fuzzy metric spaces.

متن کامل

Computing Maximal Layers of Points in Ef(n)

In this paper we present a randomized algorithm for computing the collection of maximal layers for a point set in E (k = f(n)). The input to our algorithm is a point set P = {p1, ..., pn} with pi ∈ E . The proposed algorithm achieves a runtime of O ( kn 2− 1 log k +logk (1+ 2 k+1 ) log n ) when P is a random order and a runtime of O(knk (k−1))/2 log n) for an arbitrary P . Both bounds hold in e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0365363-x